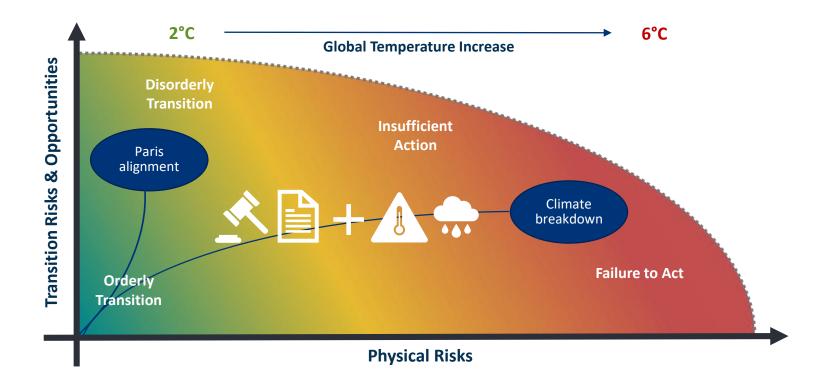


TCFD reporting for the oil & gas sector in Russia

Carbon Trust and EthnoExpert

24/02/2021


1. Introduction to TCFD

- 2. Climate change risks and opportunities in the oil and gas sector
- 3. TCFD practical how-tos for implementation

How will climate change affect your business?

TCFD encourages organisations to explore the likelihood and magnitude of financial impacts from potential climate-related risks & opportunities now and in the future

How will climate change affect your business?

TCFD is a disclosure framework of 11 questions across 4 categories

Governance

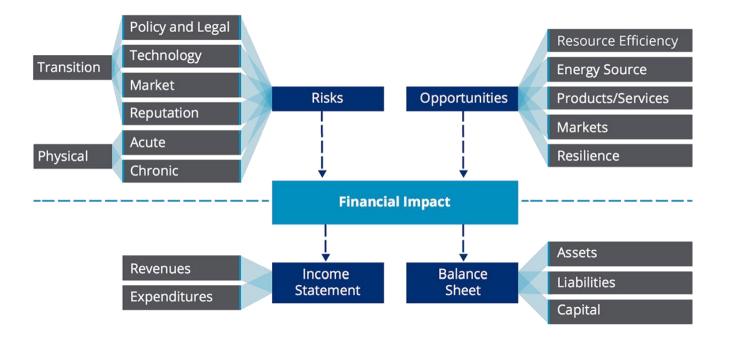
- a) **Board oversight** of climate-related risks and opportunities
- b) Management role in risk assessment and management

Strategy

- a) Risks and opportunities identified
- b) Impact on business, strategy, and planning
- c) **Resilience of strategy** to different scenarios

Risk Management

- a) Process for identifying and assessing climate-related risks
- b) Process for managing climate-related risks
- c) Integration with overall risk management


Metrics and Targets

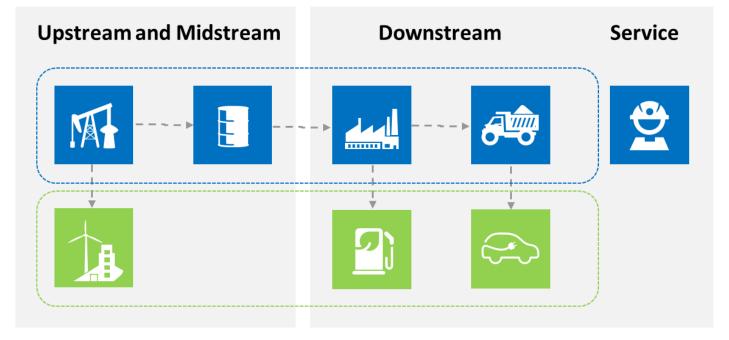
- a) Metrics for climate-related risk assessment
- b) Scope 1, 2, and (if needed) 3 emissions and related risks
- c) Targets for risks and opportunities and related performance

Types of climate-related risks and opportunities

TCFD identifies 11 categories of risks and opportunities

1. Introduction to TCFD

2. Climate change risks and opportunities in the oil and gas sector


3. TCFD practical how-tos for implementation

Reorganization of value chain in the oil & gas sector

Oil and gas companies are adding new businesses:

Renewables, CCUS, storage and EVs, biorefineries; new chemicals etc.

Main transition risks for the oil & gas sector

	Upstream and Midstream	Downstream
Policy and legal risks	 Increased pricing of carbon through national & international schemes Reduced access and inflated cost of capital (e.g. EU Taxonomy) 	 Ban for virgin/single-use plastics products results in lower demand for refined products
Market risks	 Shift in basket of primary energy to less carbon-intense sources Increasing risk of divestment (e.g. exclusion lists) Uncertainty and shifts in energy market dynamics Fall in oil prices create "unburnable" reserves 	 Fall in oil prices lead to stranded assets (e.g. refineries, terminals and retail facilities)
Technological risks	 Increased penetration of low-carbon energy sources (e.g. wind, solar) in the energy mix undermine competitiveness of fossil fuels Lack of innovation in equipment of conventional fossil fuel-based extraction and refining technology 	 Innovation in EV technology shifts market dynamics leading to reduced demand for fossil fuel- based products (e.g. petrol, diesel)
Reputational risks	 Changing expectations about oil & gas by consumers Increased cases of litigation due to low-quality climate-related disclosures Increased shareholders' pressure due to low-quality climate-related disclosures 	 Shift in consumer preferences results in lower demand for fossil fuel-based products/services (e.g. diesel cars)

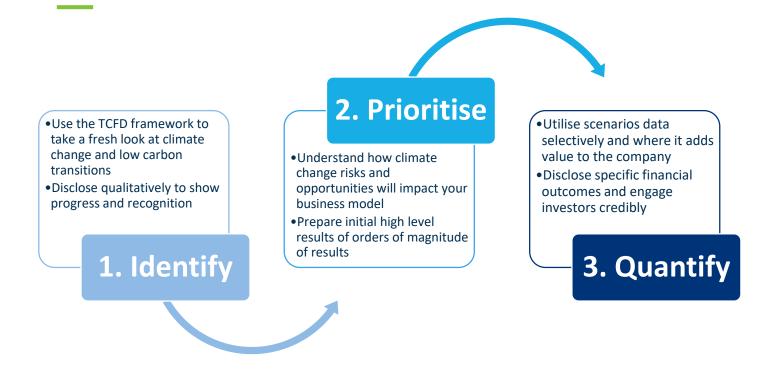
	All supply chain stages (Upstream, Midstream, and Downstream)						
	 Prolonged periods of extreme heat may lead to production cuts if an adequate supply of cooling water is not available 						
	 Extreme changes in precipitation patterns that may result in flooding, changes in road or well-site conditions, or damage to facilities 						
Acute risks	 Suspension of equipment operation and damage to bases due to abnormal rainfall and others 						
	 Increasing storm strength or frequency might cause reduced oil production, then storms impact coastal or off-shore oil platforms 						
	 Drought or decrease in precipitation can lead to reduced shale oil or gas availability, since more water will be needed for drilling and to remove drilling mud 						
	Impact of sea-level rise on manufacturing and distribution sites						
Chronic risks	 Temperature increase might lead to thawing of permafrost, which in turn threatens structural integrity of infrastructure 						

Source: EthnoExpert Research based on TCFD supporter's list (24.12.2020) and ADB (2012) Climate risk and adaptation in the electric power sector; https://energypolicy.ru/p-m-bobylev-m-m-dygan-adaptacziya-kizmen/energetika/2020/18/16/

Main opportunities for the oil & gas sector

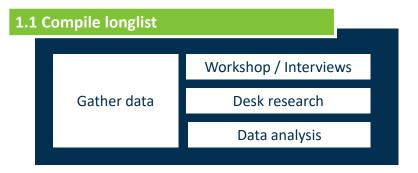
	Upstream and Midstream	Downstream			
Market opportunities		 Support new transport system for EVs and charging infrastructure (e.g. through M&As or VCs) Shift from petroleum products to LNG in transportation (esp., shipping) 			
Products and services	 Investment in renewables as a way to diversify revenue streams (e.g. hydrogen, wind, solar) 	 Investment in low-carbon products (e.g. biofuels, lubricants and petrochemicals) Provide carbon offsetting consultancy service for customers 			
New energy sources	 Increased use of renewable-based energy generation for own operations 				
Resilience	 Investment in new technology to measure and monitor GHG emissions and other leakages from facilities 				

- What do you consider as the main risks for the oil and gas sector in Russia?
- What do you consider as the main opportunities for the oil and gas sector in Russia?



- 1. Introduction to TCFD
- 2. Climate change risks and opportunities in the oil and gas sector
- 3. TCFD practical how-tos for implementation

The process for TCFD implementation


Disclosing aligned to TCFD is an iterative process with three fundamental steps

1. Identification and categorisation

Identify and categorise relevant risks and opportunities

1.2 Categorisation

Aim:

 Identify risks and opportunities based on the organisation's specific characteristics and value creation model, as well as the industry context in which it operates

Identify

Prioritise

Quantify

 Identify both internal and external drivers of risks

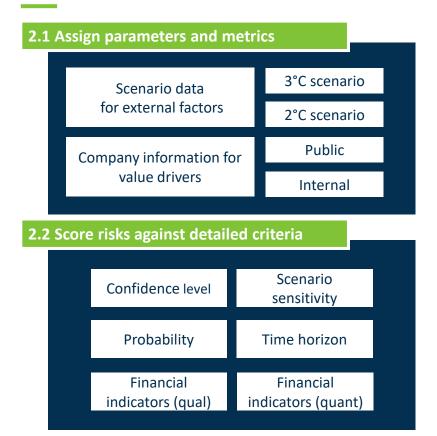
Aim:

 Group risks and opportunities by pre-defined categories to start identifying trends and hotspots

1. Example identification output

Risks and opportunities are categorised and presented in a longlist

Risk or opportunity	TCFD category	External root cause	Value chain stage	Value driver affected	Geography	Time horizon
Carbon pricing	Policy & legal risk	Introduction of direct carbon tax	Scope 1 sources (e.g. drilling and processing)	Cost	Global	Short
Unburnable reserves	Market risk	Falling oil and gas prices	Exploration and extraction	Revenue and margins	Global	Short
Lower demand for plastic	Market risk	Increased plastic recyclability	Sales of oil	Revenue	China	Medium
Investor demand for environmental disclosures	Reputational risk	Changing investor expectations	Admin / overheads	Cost	Europe	Medium


Prioritise

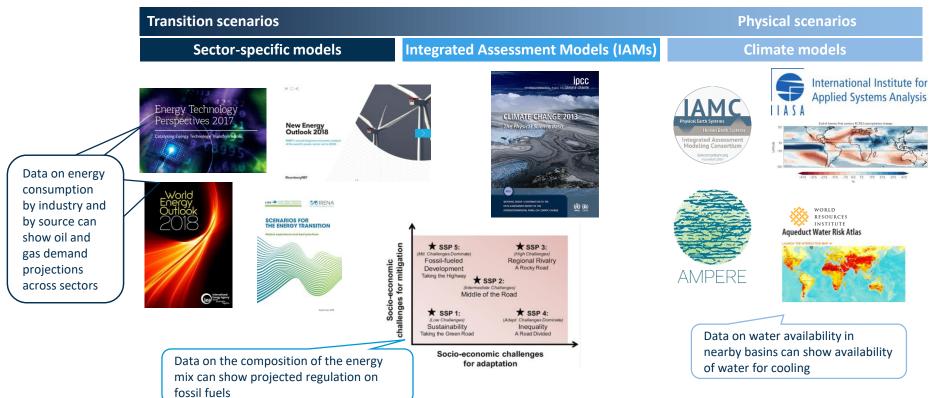
2. Prioritisation

Assign quantitative metrics and score against set criteria

Aim:

- Assign a parameter to the risks and source relevant scenario data
- Assign financial metrics to the risks based on the elements of the business model that may be affected

Aim:


- Translate evidence base into comparable outputs
- Score risks and opportunities following a systematic, data-driven and coherent approach based on set criteria

2. Resources for scenario analysis

Different types of scenarios exist, each providing appropriate underlying data for relevant risks and opportunities

2. Typical metrics for financial quantification

Financial impact is spread across different business areas, depending on each risk or opportunity, and TCFD recommends considering four financial categories

	Revenues	Expenditures Assets and liabilities		Capital and financing	
Value driver exposed to climate change	 Demand Product mix and production capacity Market positioning and competition Operational continuity 	 Production costs Energy and other operating costs Fines and regulatory compliance R&D Resilience to supply chain disruption 	 Fixed asset values and re-pricing Asset valuation and lifetimes R&D and innovation costs CAPEX requirements Return on investments 	 Access to finance Trustworthiness and creditability Relations with workforce, investors and other stakeholders Legal environment 	
Example financial metrics	RevenueEBITDA	COGSFixed costsOperating and other margins	 Asset valuations and write-offs Reserves valuation Inventory loss RoE and RoI 	 Cost of capital Interest rates Long term debt Minority interest and retained equity 	

Prioritise

2. Example prioritisation analysis

Each risk and opportunity is scored on the 6 criteria, using scenario analysis

Risk or opportunity		Parameter	Confidence	Scenario sensitivity	Probability	Time horizon	Financial impact
Carbon pricing	<	Russian carbon price (\$/tCO2)	5	5	5	3	\$5-10m
		IIASA, SSP database Baseline: SSP2-45, R5.2REF Transition: SSP1-26, R5.2REF	High, trusted source and relevant parameter	High, >50% parameter divergence across scenarios	High, >50% rate of change of parameter	Short term, <5 years	Based on current carbon price * scope 1 emissions
Unburnable reserves	<	Oil price (\$/tCO2)	5	5	5	2	\$50-100m
		IEA, WEO scenarios Baseline: Current policies Transition: Sustainable development	High, trusted source and relevant parameter	High, >50% parameter divergence across scenarios	High, >50% rate of change of parameter	Medium term, 5-20 years	Current reserves of \$50m
Lower demand for plastic	<	Recycled plastic displacement rate (%)	4	5	5	2	\$1-2m
		IEA, ETP scenarios Baseline: RTS Transition: 2DS	High, trusted source and relatively relevant parameter	High, >50% parameter divergence across scenarios	High, >50% rate of change of parameter	Medium term, 5-20 years	Revenue from plastics industry is \$1m
Investor demand for environmental disclosures	<	None / qualitative assessment	1	3	5	2	Low
		No parameter available	Low, only qualitative assessment possible	Medium, qualitative assessment	High, qualitative assessment	Medium term, 5-20 years	Qualitative assessment

Illustrative purposes only

Identify

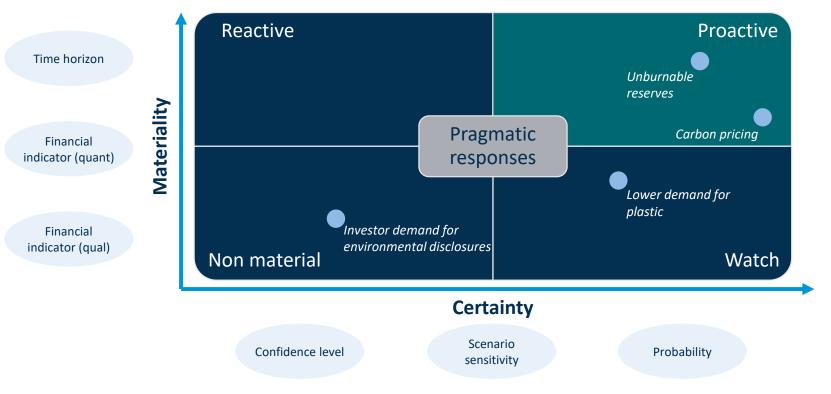
Prioritise

2. Example prioritisation analysis

Each risk and opportunity is scored on the 6 criteria, using scenario analysis

Risk or opportunity	Parameter	Confidence	Scenario sensitivity	Probability	Time horizon	Financial impact
Carbon pricing	Russian carbon price (\$/tCO2)	5	5	5	3	\$5-10m
	IIASA, SSP database Baseline: SSP2-45, R5.2REF Transition: SSP1-26, R5.2REF	High, trusted source and relevant parameter	High, >50% parameter divergence across scenarios	High, >50% rate of change of parameter	Short term, <5 years	Based on current carbon price * scope 1 emissions
Unburnable reserves	Oil price (\$/tCO2)	5	5	5	2	\$50-100m
	IEA, WEO scenarios Baseline: Current policies Transition: Sustainable development	High, trusted source and relevant parameter	High, >50% parameter divergence across scenarios	High, >50% rate of change of parameter	Medium term, 5-20 years	Current reserves of \$50m
Lower demand for plastic	Recycled plastic displacement rate (%)	4	5	5	2	\$1-2m
	IEA, ETP scenarios Baseline: RTS Transition: 2DS	High, trusted source and relatively relevant parameter	High, >50% parameter divergence across scenarios	High, >50% rate of change of parameter	Medium term, 5-20 years	Revenue from plastics industry is \$1m
Investor demand for environmental disclosures	None / qualitative assessment	1	3	5	2	Low
	No parameter available	Low, only qualitative assessment possible	Medium, qualitative assessment	High, qualitative assessment	Medium term, 5-20 years	Qualitative assessment

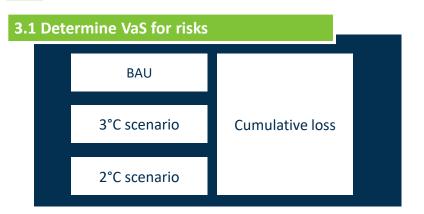
Illustrative purposes only


Identify

Prioritise

2. Example prioritisation decision

The six criteria are grouped into "certainty" and "materiality", and risks/opportunities in the "proactive" quadrant are prioritised



Identify

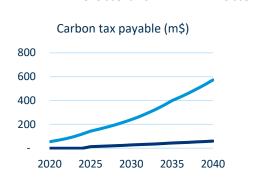
Prioritise

3. Quantification Determine the value-at-stake (VaS)

Identify Prioritise Quantify

Aim:

- Quantify long term financial impact of prioritised risks and opportunities
- Determine the cumulative loss (for risk) or potential value creation (for opportunities) between the "Businessas-Usual" baseline and two pathways developed aligned to climate scenarios




3. Example quantification

Assessed risk: higher tax payable due to increased carbon tax rate

3°C scenario

Projected carbon price

 Extract Russian carbon price projections from climate scenario database

Source: IIASA, SSP database

- Baseline: SSP2-45, R5.2REF
- Transition: SSP1-26, R5.2REF

Resulting impact on value driver (tax payable)

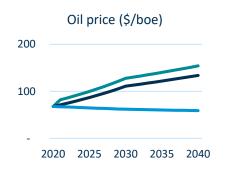
2°C scenario

2. Develop calculation for carbon tax impact: *Scope 1 emissions * carbon price*

Source:

- Calculation: UK Government 2020 consultation on carbon tax report
- Scope 1 emissions: Company reports (assumed 500 tCO2)

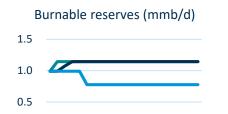
Value-at-stake


 Calculate difference in impact on tax payable between BAU scenario (no carbon tax) and the two climate scenarios

3. Example quantification

Assessed risk: unburnable oil reserves due to low oil price

Company projection


Projected oil price

 Extract oil prices from internal projections and climate scenario database

Source: IEA, WEO scenarios

- Baseline: Current policies
- Transition: Sustainable development

Illustrative purposes only

Burnable reserves

2. Project burnable reserves at different price points

Sources:

- Normally based on companies' internal information on asset breakeven prices
- Displayed illustrative figures based on McKinsey research and Carbon Trust estimates

3°C scenario

Revenue from burning reserves

2°C scenario

 Develop calculation for revenue from reserves: mmb/d reserves * \$/bbl oil price

Value-at-stake

 Calculate difference in revenue between scenarios and company projection

- What part of a TCFD disclosure project do you think is the easiest?
- What part of a TCFD disclosure project do you think is the most difficult?
- What team(s) within your organisation is responsible for TCFD?
- Have you already disclosed aligned to TCFD?
- If YES, is there an area you plan to expand on in your next iteration of TCFD disclosure?
- If NO, what do you see as the main barriers for starting a TCFD project?
- If NO, when do you think TCFD will be important for your business?

Whilst reasonable steps have been taken to ensure that the information contained within this publication is correct, the authors, the Carbon Trust, its agents, contractors and sub-contractors give no warranty and make no representation as to its accuracy and accept no liability for any errors or omissions. All trademarks, service marks and logos in this publication, and copyright in it, are the property of the Carbon Trust (or its licensors). Nothing in this publication shall be construed as granting any licence or right to use or reproduce any of the trademarks, services marks, logos, copyright or any proprietary information in any way without the Carbon Trust's prior written permission. The Carbon Trust enforces infringements of its intellectual property rights to the full extent permitted by law.

The Carbon Trust is a company limited by guarantee and registered in England and Wales under company number 4190230 with its registered office at 4th Floor Dorset House, Stamford Street, London SE1 9NT. Published in the UK: 2021.

Published in the UK: 2021.

© The Carbon Trust 2021. All rights reserved.